Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19977, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968564

RESUMO

The aim of the study was to evaluate the role of kisspeptin-10 (KiSS-10) in the regulation of collagen content in cardiac fibroblasts. An attempt was also made to describe the mechanism of the effect of KiSS-10 on collagen metabolism. The studies indicate that kisspeptin-10 significantly increases the content of intracellular collagen in the myocardium. KiSS-10 also elevates the level of phosphorylated focal adhesion kinase (FAK) in human cardiac fibroblasts. The inhibition of FAK negates the stimulatory effect of KiSS-10 on collagen deposition in vitro. These changes correlate with an increase in the level of propeptides of procollagen type I (PICP) and III (PIIICP) in fibroblast culture medium and mouse PIIICP in serum. Moreover, this hormone inhibits the release of metalloproteinases (MMP-1,-2,-9) and elevates the secretion of their tissue inhibitors (TIMP-1,-2,-4). KiSS-10 also enhances the expression of α1 chains of procollagen type I and III in vitro. Thus, KiSS-10 is involved in the regulation of collagen metabolism and cardiac fibrosis. Augmentation of collagen deposition by KiSS-10 is dependent on the protein synthesis elevation, inhibition of MMPs activity (increase of TIMPs release) or decrease of MMPs concentration. The profibrotic activity of KiSS-10 is mediated by FAK and is not dependent on TGF-ß1.


Assuntos
Colágeno , Miocárdio , Humanos , Camundongos , Animais , Colágeno/metabolismo , Miocárdio/metabolismo , Fibroblastos/metabolismo , Metaloproteinases da Matriz/metabolismo
2.
Pharmacol Rep ; 75(3): 560-569, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188903

RESUMO

BACKGROUND: The extracellular matrix serves as a scaffold for cardiomyocytes, allowing them to work in accord. In rats, collagen metabolism within a myocardial infarction scar is regulated by melatonin. The present study determines whether melatonin influences matrix metabolism within human cardiac fibroblast cultures and examines the underlying mechanism. METHODS: The experiments were performed on cultures of cardiac fibroblasts. The Woessner method, 1,9-dimethylmethylene blue assay, enzyme-linked immunosorbent assay and quantitative PCR were used in the study. RESULTS: Melatonin treatment lowered the total cell count within the culture, elevated necrotic and apoptotic cell count as well as augmented cardiac fibroblast proliferation, and increased total, intracellular, and extracellular collagen within the fibroblast culture; it also elevated type III procollagen α1 chain expression, without increasing procollagen type I mRNA production. The pineal hormone did not influence matrix metalloproteinase-2 (MMP-2) release or glycosaminoglycan accumulation by cardiac fibroblasts. Melatonin increased the release of Fibroblast Growth Factor-2 (FGF-2) by human cardiac fibroblasts, but cardiotrophin release was not influenced. CONCLUSION: Within human cardiac fibroblast culture, collagen metabolism is regulated by melatonin. The profibrotic effect of melatonin depends on the elevation of procollagen type III gene expression, and this could be modified by FGF-2. Two parallel processes, viz., cell elimination and proliferation, induced by melatonin, lead to excessive replacement of cardiac fibroblasts.


Assuntos
Melatonina , Humanos , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos , Metaloproteinase 2 da Matriz/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo
3.
Biomed Rep ; 15(2): 71, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34276989

RESUMO

Histamine is involved in the regulation of collagen metabolism during healing following a myocardial infarction; however, its effects on the intact heart tissue is unknown. The aim of the present study was to determine whether histamine may influence collagen content in cells isolated from intact heart, and to identify the histamine receptor involved in the regulation of collagen deposition. Cells were isolated from intact rat hearts and subjected to identification by flow cytometry. The effects of histamine and its receptor agonists and antagonists were investigated. The heart cells were found to be actin, desmin and vimentin positive. Histamine (used at a concentrations of 1x10-10-1x10-5 M) increased collagen content within the culture and increased the expression of α1 chain of the procollagen type III gene. The H2, H3 and H4 receptor inhibitors ranitidine, ciproxifan and JNJ 7777120 blocked the effect of histamine on collagen content. All tested histamine receptor agonists, viz. 2-pyridylethylamine dihydrochloride (H1 receptor agonist), amthamine dihydrobromide (H2 receptor agonist), imetit (H3 receptor agonist) and 4-methylhistamine hydrochloride (H4 receptor agonist), elevated collagen content within the heart myofibroblast cultures. The cells isolated from the intact heart were identified as myofibroblasts. Thus, the results of the present study showed that histamine augmented collagen content in the heart myofibroblast culture by activation of three histamine receptors (H2, H3 and H4). The effect of the amine was also dependent on the activation of collagen type III gene expression.

4.
Mol Cell Biochem ; 476(2): 1083-1092, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230787

RESUMO

The inflammatory reaction influences the deposition of collagen within wound granulation tissue. The aim of the present study is to determine whether histamine acting directly on myofibroblasts derived from wound granulation tissue may influence collagen deposition. It also identifies the histamine receptor involved in this process. The experiments were carried out on cells isolated from the granulation tissue of a wound model (a polypropylene net inserted subcutaneously to rats) or intact rat skin. Collagen content was measured following the addition of different concentrations of histamine and treatment with histamine receptor antagonists (ketotifen - H1 inhibitor, ranitidine - H2 inhibitor) and a histamine receptor H1 agonist (2-pyridylethylamine dihydrochloride).The cells were identified as myofibroblasts: alpha-smooth muscle actin, vimentin, and desmin positive in all experimental conditions. Histamine increased the collagen level within both cell cultures, i.e., those isolated from granulation tissue or intact skin. It did not, however, influence the expression of either the collagen type I or III genes within the cultured myofibroblasts. Histamine activity was reduced by ketotifen (the H1 receptor inhibitor) and increased by the H1 receptor agonist, as demonstrated by changes in the levels of collagen in the myofibroblast culture. Histamine increased collagen content within the cultures, acting directly on myofibroblasts via H1 receptor stimulation.


Assuntos
Colágeno/metabolismo , Tecido de Granulação/efeitos dos fármacos , Histamina/farmacologia , Miofibroblastos/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Tecido de Granulação/metabolismo , Histamina/metabolismo , Agonistas dos Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Masculino , Miofibroblastos/metabolismo , Ratos , Ratos Wistar , Cicatrização/fisiologia
5.
J Cell Mol Med ; 24(23): 13853-13862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124775

RESUMO

Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin-6 (IL-6), interleukin-11 (IL-11) and soluble receptor of IL-6 (sIL-6R). It also examines the roles of integrin α2ß1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2ß1 integrin count and released higher levels of IL-6 and sIL-6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL-11 content. The silencing of the α2 integrin subunit decreased the release of IL-6. Similar effects were induced by TC-I 15 (an α2ß1 integrin inhibitor). The IL-6 levels in the serum and heart were markedly lower in α2 integrin-deficient mice B6.Cg-Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL-6 level. sIL-6R secretion is not dependent on α2ß1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL-6 by cardiac fibroblasts, and this effect is dependent on α2ß1 integrin and kinase Src activation.


Assuntos
Fibroblastos/metabolismo , Integrina alfa2beta1/metabolismo , Interleucina-6/biossíntese , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/ultraestrutura , Citometria de Fluxo , Expressão Gênica , Inativação Gênica , Humanos , Integrina alfa2beta1/genética , Masculino , Fenômenos Mecânicos , Camundongos , Camundongos Transgênicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
6.
Adv Clin Exp Med ; 26(2): 223-230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791838

RESUMO

BACKGROUND: Tissue engineering is a strategy aimed at improving the regeneration of injured tissues. OBJECTIVES: The aim of the present study was to determine whether a tri-copolymer composed of crosslinked collagen, chondroitin sulfate and hyaluronic acid (Col + CS + HA) provides a better environment for fibroblast and embryonic nerve cell culture than a collagenous scaffold (Col). MATERIAL AND METHODS: The porosity of each of the matrices was characterized with a scanning electron microscope. Fibroblasts were isolated from rat wound granulation tissue (polypropylene net implanted subcutaneously). Embryonic nerve cells were obtained from the brains of rat embryos. The cells were applied to scaffolds and then stained with bisbenzimide to calculate cell entrapment within the material. The metabolic activity of the cells cultured within the scaffolds was tested using the 3-(4,5-dimethythiazol2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The Col scaffolds had a homogenously porous structure with a pore diameter of 50 µm for 70% of pores. The pore diameter in the tri-copolymer (Col + HA + CS) ranged from 24 to 160 µm (95% of total pore volume). Four times more cells (fibroblasts and embryonic nerve cells) were trapped within the superficial part of the collagenous scaffold than that of the tri-copolymer. On the third day of culture the metabolic activity of the fibroblasts within the 2 tested scaffolds was significantly higher than in the control conditions (cell culture on a laminin-coated surface). Also, the embryonic nerve cells demonstrated increased metabolic activity in Col + CS + HA scaffolds than the Col scaffolds. CONCLUSIONS: Both fibroblasts and embryonic nerve cells could be seeded within the 2 tested scaffolds. Both the scaffolds provide good conditions for fibroblast culture. However, the Col + CS + HA tri-copolymer is preferable for embryonic nerve cell engineering.


Assuntos
Sulfatos de Condroitina/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Neurônios/metabolismo , Tecidos Suporte/química , Animais , Encéfalo/citologia , Encéfalo/embriologia , Sobrevivência Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Citometria de Fluxo , Masculino , Microscopia Eletrônica , Neurônios/citologia , Porosidade , Ratos Wistar , Engenharia Tecidual/métodos , Ferimentos e Lesões/patologia
7.
Endokrynol Pol ; 67(5): 507-514, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26884304

RESUMO

INTRODUCTION: Melatonin exerts its biological role acting mainly via G protein-coupled membrane MT1 and MT2 receptors. To determine whether a response of oxytocinergic neurons to different concentrations of melatonin is mediated through membrane MT1 and/or MT2 receptors, the effect of melatonin receptors antagonists, i.e. luzindole (a non-selective antagonist of both MT1 and MT2 receptors) and 4-phenyl-2-propionamidotetralin (4-P-PDOT - a selective antagonist of MT2 receptor), on melatonin-dependent oxytocin (OT) secretion from the rat hypothalamo-neurohypophysial (H-N) system, has been studied both in vitro and in vivo. MATERIAL AND METHODS: For in vitro experiment, male rats served as donors of the H-N explants, which were placed in 1 ml of normal Krebs-Ringer fluid (nKRF) heated to 37oC. The H-N explants were incubated successively in nKRF {fluid B1} and incubation fluid as B1 enriched with appropriate concentration of melatonin, i.e. 10-9 M, 10-7 M, or 10-3 M and luzindole or 4-P-PDOT, or their vehicles (0.1% ethanol or DMSO) {fluid B2}. After 20 minutes of incubation in fluid B1 and then B2, the media were collected and immediately frozen before OT estimation by the RIA. The OT secretion was determined by using the B2/B1 ratio for each H-N explant. During in vivo experiment, rats were given an intracerebroventricular (i.c.v.) infusion of 5 mL luzindole or 4-P-PDOT, or their solvent (0.1% DMSO) and 10 minutes later the next i.c.v. infusion of 5 mL of either melatonin solution (10-7 M) or its vehicle (0.1 % ethanol in 0.9% sodium chloride). RESULTS: Melatonin at a concentration of 10-3 M significantly stimulated, while at a concentration of 10-9 M had no effect on, oxytocin secretion from the rat H-N system in vitro, also when luzindole or 4-P-PDOT was present in a medium. On the other hand, melatonin at a concentration of 10-7 M diminished this neurohormone output from an isolated H-N system and into the blood. Luzindole significantly suppressed such melatonin action, while 4-P-PDOT did not change the inhibitory influence of 10-7 M melatonin on oxytocin release, both in vitro and in vivo. CONCLUSIONS: The present study demonstrates that an inhibitory effect of 10-7 M melatonin on oxytocin secretion from the rat H-N system is mediated through a subtype MT1 membrane receptor and its action is independent of subtype MT2 receptor. However, for the stimulatory effect of pharmacological concentration (10-3 M) of the pineal hormone on oxytocin release, probably mechanisms other than membrane MT1/MT2 receptor(s)-dependent are involved. (Endokrynol Pol 2016; 67 (5): 507-514).


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Melatonina , Ocitocina/metabolismo , Receptor MT1 de Melatonina/fisiologia , Receptor MT2 de Melatonina/fisiologia , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
8.
Pharmacol Rep ; 65(3): 642-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950586

RESUMO

BACKGROUND: Melatonin has been proven to have a regulatory influence on collagen accumulation in different types of wound. It was found to inhibit collagen accumulation in the superficial wound model but increase it in the myocardial infarction scar. The aim of the study is to determine the mechanism of melatonin action in the two wound types in rats. METHODS: Cells were isolated from both the superficial wound (subcutaneously inserted polypropylene net) and myocardial infarction scar (induced by ligation of the left coronary artery) and were identified by electron microscopy. RESULTS: Long-shaped cells forming whirl-like structures in culture (mainly identified as fibroblasts) were isolated from the superficial wound model, while myofibroblasts growing in a formless manner were acquired from the infarcted heart scar. Melatonin (10(-7) M) increased collagen accumulation in both fibroblast and myofibroblast cultures. Luzindole (10(-6) M), the blocker of both MT1 and MT2 melatonin membrane receptors, inhibited the effect of melatonin on the two types of cells. CONCLUSION: Regardless of various healing potentials demonstrated by the tested cells (different cell composition, growth and organization), their response to melatonin was similar. Moreover, in the two investigated cultures, augmentation of the collagen content by melatonin was reversed by luzindole, which indicates the possibility of melatonin membrane receptor involvement in that process. The present results suggest that the increased melatonin-stimulated deposition of collagen observed in the infarcted heart of rats could be dependent on activation of the melatonin membrane receptors on scar myofibroblasts.


Assuntos
Colágeno/metabolismo , Melatonina/farmacologia , Miofibroblastos/efeitos dos fármacos , Receptores de Melatonina/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Cicatriz/tratamento farmacológico , Cicatriz/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Coração/efeitos dos fármacos , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Ratos , Ratos Wistar , Receptores de Melatonina/metabolismo , Triptaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...